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Abstract 17 

Chesapeake Bay, the largest estuary in North America, is impaired by excess nutrient discharges, 18 

especially from urban and agricultural land. Watershed simulation models have provided key 19 

insights to understanding land-to-water connections, but rarely are these models applied to guide 20 

local land management to explore and communicate uncertainty in the model predictions. In this 21 

study, three watershed simulation models; the Soil and Water Assessment Tool (SWAT), the 22 

Generalized Watershed Loading Function (GWLF) model, and the Chesapeake Bay Program’s 23 

Chesapeake Watershed Model (CBP-CWM) were implemented to predict water, total nitrogen, 24 

and total phosphorus discharges from small tributaries in the town of Queenstown, Maryland, 25 

USA. Based on our evaluation metrics, none of the models consistently provided better results. 26 

In general, there was a good agreement on annual average water flow between the SWAT and 27 

CBP-CWM models, and the GWLF and CBP-CWM models predicted similar TN and TP loads. 28 

Each model has strengths and weaknesses in flow and nutrient predictions, and predictions 29 

differed among models even when models were initialized with the same data. Using multiple 30 

models may enhance the quality of model predictions and the decision making process. 31 

However, it could also be the case that the complexity of implemented watershed models and 32 

resolution of our understanding currently are not yet suited to provide scientifically credible 33 

solutions.  34 

Keywords: Watershed Modeling; Multiple Model Comparisons; SWAT; GWLF; CBP-CWM; 35 

Chesapeake Bay 36 

 37 
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1. Introduction 38 

Coastal zones provide valuable ecosystem services to human society worldwide (Agardy 39 

and Alder, 2005; Barbier et al., 2011), but coastal zones have also been foci of urban 40 

development. In some US coastal areas, the rate of development has considerably exceeded the 41 

population growth rate (Nagy et al., 2012). Population growth is accompanied by land 42 

conversion, mostly into urban land uses, which can threaten the integrity of coastal waters 43 

through multiple negative effects on water quality ( Grimm et al., 2008; Tu, 2009). Urbanization 44 

increases impervious area, resulting in quicker and larger pulses in storm flow, geomorphic 45 

changes in stream channels, and higher sediment yields (Arnold et al., 1982; Wahl et al., 1997). 46 

Urban lands are also potential sources for heavy metals, nutrients, and bacteria ( Rose, 2002; 47 

Schoonover et al., 2005). Excessive loads of nitrogen (N) and phosphorus (P) in urban streams 48 

can trigger undesirable effects in the receiving water bodies, such as algal blooms, 49 

eutrophication, and hypoxia. In addition to urbanization, agricultural activities are also major 50 

contributors to coastal eutrophication (Boesch et al., 2001).  51 

Chesapeake Bay, the largest estuary in North America, is ecologically degraded, largely 52 

because of excessive nutrients received from urban and agricultural discharges. In 1970, 53 

Chesapeake Bay was one of the first estuaries found to contain marine dead zones (Kemp et al., 54 

2005).  The Bay and its tidal tributaries were later listed as impaired water bodies under section 55 

303(d) of the Clean Water Act. Since 1980, management efforts to reduce nutrient loads to the 56 

Bay have intensified, but the loads from urban land have actually increased by 15% since 1985 57 

(Chesapeake Bay Program, 2010).  Increased loads from population growth and new suburban 58 

sprawl have outweighed load reductions achieved from stormwater management practices. 59 

Current efforts to reduce urban loads emphasize site-scale practices (i. e., stormwater 60 
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management) and watershed-scale planning, such as directing low impact development to 61 

designated areas adjacent to a municipality. 62 

Since 1983, the Chesapeake Bay Program (CBP); a regional partnership including local, 63 

state, and federal agencies,; has worked to protect and restore the Bay and its 167,000 km2 64 

watershed (Chesapeake Bay Program, 2010). To develop policy recommendations, the CBP uses 65 

simulation models of the Chesapeake Bay watershed (CBP-CWM) and estuary to set the 66 

regulatory limits for total maximum daily loads (TMDLs) to Chesapeake Bay and to evaluate the 67 

likely effects of possible management actions on nutrient loads (Linker et al., 2013). However, 68 

land management plans are implemented at much smaller spatial units than those considered by 69 

the CBP-CWM model. Furthermore, when assessing the impacts of alternative land management 70 

plans, the intrinsic uncertainty of watershed processes modeling and the potential impacts of 71 

climate change on surface water quality and quantity are often overlooked. Land management 72 

plans for improving water quality may fail if the plans are based on models that do not consider 73 

the spatial patterns of land use, model uncertainty, or climatic variability (Weller et al. 2011, 74 

Weller and Baker 2014). 75 

Watershed models are essential tools for summarizing knowledge of watershed processes 76 

and forecasting the effects of different land use or climate scenarios on water quantity and 77 

quality. However, imperfect model representations of key hydrologic and biogeochemical 78 

processes reduce confidence in model predictions (Sharifi et al., 2016; Yen et al., 2014b). 79 

Combining results from a group of models (ensemble modeling) instead of relying on a single 80 

model can improve predictions and enhance confidence when applying the models to identify 81 

optimal development scenarios (Beven and Freer, 2001; McIntyre et al., 2005). Assessing model 82 

structural uncertainty is a common objective among many studies that have employed multiple 83 
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watershed models (Breuer et al., 2009). Most of these studies focused only on parameter 84 

uncertainty within a single model, without much consideration to structural uncertainty (i. e., the 85 

choice of underlying model algorithms) or input uncertainty (i. e., the choice of and errors in 86 

land use, land cover, and other input data) (Vrugt et al 2005).  Furthermore, most studies focus 87 

primarily on flow prediction (Reed et al., 2004; Goswami et al., 2005; Breuer et al., 2009); and 88 

fewer studies considered model uncertainty in predicting sediment (Kalin and Hantush, 2006; 89 

Shen et al., 2009), phosphorus (Nasr et al., 2007) nitrogen (Amiri and Nakane, 2009; Grizzettia 90 

et al., 2005), or multiple materials (Boomer et al. 2013).  91 

A multi-model ensemble (MME) goes beyond model comparison by integrating the 92 

predictions of individual models into an ensemble average. MME often has better average 93 

performance than single models and increases the credibility of model predictions by accounting 94 

for uncertainty in model structure (Georgakakos et al., 2004; Boomer et al 2013). Ensemble 95 

model averaging provides alternatives in addition to a single model, especially when there is not 96 

enough information to identify the best model or when the data do not favor a particular model 97 

(Kadane and Lazar 2004). Several studies have applied the MME approach to flow prediction or 98 

flood forecasting (Renner et al., 2009; Zhao et al., 2011) and one study demonstrated that 99 

combining nitrogen predictions of five models gave better predictions than the individual  100 

models (Exbrayat et al., 2010). In addition, the LUCHEM study applied an ensemble of 10 101 

watershed models to assess the effects of land use and land cover (LULC) change on hydrology 102 

and water quality (Breuer et al., 2009; Huisman et al., 2009; Viney et al., 2009). 103 

It was mentioned in literature that varying spatial resolution of a single modeling project in 104 

the same study area may cause direct impact upon model predictions for flow and water quality 105 

outputs (Chaubey et al., 2005). In this study, it was further investigated if the modeling results 106 
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could be inconsistently affected by alternative watershed simulation models even initialized by 107 

the same data resolution. Three watershed models were used to evaluate and compare the 108 

impacts of three alternative future land development scenarios for Queenstown, MD; a small (37 109 

km2) coastal community located on the Chesapeake Bay’s Eastern Shore (Figure 1). The models 110 

were the Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012), the Generalized 111 

Watershed Loading Function (GWLF) model (Haith and Shoemaker, 1987) and the Chesapeake 112 

Bay Program’s Chesapeake Watershed Model (CBP-CWM) (Linker et al., 2013). It was stated in 113 

literature that the SWAT model is slightly better than GWLF in terms of nutrient predictions. 114 

However, both models performed similarly in hydrological processes (Niraula et al., 2013). In 115 

this study, model predictions of flow, total nitrogen (TN), and total phosphorus (TP) under 116 

different LULC configurations were compared; and model predictions were combined into 117 

ensemble averages, which were also compared to the predictions of the individual models. 118 

2. Materials and Methods 119 

2.1. Study Area 120 

Queenstown is located within the Chesapeake Bay drainage, in Coastal Plain physiographic 121 

province of Maryland (Figure 1). The study site has relatively flat terrain with elevations ranging 122 

from 0 to 10 meters above mean sea level (AMSL). Because of the affordable land, low taxes, 123 

and proximity to the Washington DC and Baltimore metropolitan areas; the area’s population is 124 

likely to increase by as much as 50 percent over the next 20 to 30 years (Jantz et al., 2010). 125 

The study area consists of three watersheds (Figure 1). The Queenstown Harbor Links 126 

watershed is the smallest (4.7 km2), including only small 0 or 1 order concentrated flow 127 

delivered to the Chester River subestuary. Land use includes a golf course and resort and overall 128 
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land cover is 44% open urban land, 24% croplands and 24% forests (Table 1) (2002 Maryland 129 

LULC inventory http://planning.maryland.gov/OurWork/landuse.shtml). The Queenstown Creek 130 

watershed (QT Creek) is mainly croplands (57%) and forests (23%) with a relatively small 131 

percentage of developed lands (14%). The Upper Wye watershed is the largest watershed (24 132 

km2) in the study area and has 60% cropland, 25% forest; and 10% developed land. The 133 

Queenstown Harbor Links and QT Creek watersheds drain directly to the Chester River 134 

subestuary, while the Upper Wye watershed drains south through the Wye River to the Eastern 135 

Bay subestuary. The current Queenstown municipality is in the QT Creek watershed. Planning 136 

scenarios direct the bulk of development to the QT Creek and Upper Wye watersheds with no 137 

further development in the Queenstown Harbor Link watershed.  138 

2.2. LULC Scenarios 139 

To assess potential impacts from future development, a baseline scenario representing 140 

current conditions and three alternative future LULC scenarios were developed with the 141 

Queenstown Planning Commission (Table 1 and Figure 2). The “Distributed Growth” scenario 142 

(DG) assumes low intensity urban development across the entire planning area to the levels 143 

permitted by the current county zoning. Housing density would range between 1 and 20 acres per 144 

residential unit. In the two “Consolidated Growth” scenarios (High Impact Consolidated Growth 145 

(HI-CG) and Low Impact Consolidated Growth (LO-CG)), development would occur in 146 

designated areas adjacent to the current municipality while outlying areas would remain 147 

cropland, pasture or forest. The consolidated build-out capacity was defined by assuming a 50 148 

percent increase in development over the county zoning with additional commercial 149 

development to support the residential growth. The designated growth area was defined by 150 

assuming a housing density similar to the existing municipality targeted to locations adjacent to 151 
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the current municipality but not in sensitive or flood-prone areas, such as wetlands and areas 152 

within 300 meters of a stream. Approximately 70 percent of the Queenstown planning area 153 

would remain open space in the consolidated growth scenarios. The HI-CG and LO-CG 154 

scenarios differ in the land management of that open space. In the HI-CG scenario, the open 155 

space would be used for row crops whereas in LO-CG scenario, the open space would be used as 156 

pasture. 157 

2.3. Watershed Models 158 

This section provides an overview and further references to the three watershed models used 159 

to evaluate the impacts of alternative scenarios on water and nutrient discharges.  160 

2.3.1 Soil and Water Assessment Tool (SWAT) 161 

SWAT is a semi-distributed, process-based hydrologic and water quality model (Arnold et 162 

al., 2012) developed by U.S. Department of Agriculture (USDA). SWAT can assess long term 163 

impacts of management practices and climate change scenarios in complex watersheds. Major 164 

model components in SWAT include hydrology, weather, sedimentation, soil temperature, crop 165 

growth, nutrients, pesticides, and agricultural management (Borah and Bera, 2003; Niraula et al., 166 

2012; Wang et al., 2013, 2016; Yen et al., 2016). 167 

In SWAT, hydrologic processes are simulated daily for hydrologic response units (HRU), 168 

which are areas with similar LULC, management, and soil attributes that are distinct from other 169 

HRUs. Runoff volume is simulated using the Soil Conservation Service’s Curve Number 170 

Method (Mockus, 1969) or the Green and Ampt infiltration equation (1911). Potential 171 

evapotranspiration (PET) for each HRU can be estimated from soil permeability and vegetation 172 

cover using three different methods, and then adjusted into actual evapotranspiration based on 173 
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expected soil moisture content. Empirical equations are utilized for modeling groundwater flow. 174 

Sediment yield is computed using the MUSLE equation (Modified Universal Soil Loss Equation, 175 

Williams and Berndt, 1977). SWAT models nitrogen using three organic pools (residue, stable, 176 

and active nitrogen) and two inorganic pools (ammonia and nitrate). Mineralization, nitrification, 177 

denitrification, and volatilization govern the balance among the different pools. The nitrate 178 

concentrations in runoff, lateral flow, and percolation are functions of the volume of water and 179 

the average concentration of nitrate in the soil layer (Neitsch et al., 2005). Phosphorus is divided 180 

into two organic pools (fresh residue and humic substance) and three mineral pools (labile in 181 

solution, labile on the soil surface and fixed in soil) with decay and mineralization moving P 182 

among the pools. The soluble P concentration in surface runoff is a function of the labile P 183 

concentration in the top soil layer, runoff volume, and a partitioning factor. Concentrations of 184 

sediment-bound N and P are functions of sediment yield and organic nutrient concentration in 185 

top soil layer. SWAT has been widely applied across many disciplines with over 2000 peer 186 

reviewed publications (SWAT Literature Database, 2015), including applications in US Mid-187 

Atlantic and Northeast regions (Meng et al. (2010); Chu et al. (2004).  188 

 189 

2.3.2 Generalized Watershed Loading Function (GWLF) 190 

The GWLF model (Haith and Shoemaker, 1987) simulates runoff and sediment delivery 191 

using the Curve Number method and the Universal Soil Loss Equation (USLE) (Wischmeier and 192 

Smith, 1978). Nutrient loads are estimated from export coefficients for different LULC. GWLF 193 

also has algorithms for calculating septic system loads and for including point source discharge 194 

data. The model uses daily time steps for weather data and water balance calculations and 195 

produces monthly discharge and nutrient loads by aggregating daily model estimates into 196 
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monthly values. Site-specific calibration is achieved by adjusting the parameters that control 197 

flow separation between storm flow and base flow, deep seepage, nutrient transport, soil erosion, 198 

and sediment delivery. GWLF is suitable for estimating source loads and total discharges at 199 

seasonal and inter-annual time-scales, and it has been used in TMDL development nationally 200 

(Borah et al., 2006) and in the mid-Atlantic and northeast regions (Fisher et al., 2006; Li et al. 201 

2009). 202 

2.3.3 CBP-CWM 203 

The Chesapeake Bay Program’s Chesapeake Watershed Model (CBP-CWM) is the 204 

regulatory model used to develop the Chesapeake Bay TMDL allocations and to assess which 205 

alternate scenarios of LULC and land management practices can best meet nutrient and sediment 206 

reduction goals. 207 

The hydrological component of the CBP-CWM is based on the HSPF model (Hydrologic 208 

Simulation Program FORTRAN, Bicknell (2001)), which is a lumped parameter simulation 209 

model that uses hourly meteorological data to drive water transport and storage through 210 

watershed segments. Modeled components include surface-water runoff, surface depression 211 

storage, ground-water flow, evapotranspiration, and interception by vegetation. Landscape 212 

attributes, including topography, LULC and hydrography are used to define hydrologic response 213 

parameters that control the partitioning of water among different flow routes. Nutrient and 214 

sediment loads from major LULCs and the load responses to management practices are 215 

simulated with integrated sub-models. Organic and inorganic N cycles are simulated with a 216 

mechanistic model of the biogeochemical processes that regulate the transfer of land surface N 217 

additions to different soil, water, and atmospheric pools. P constituents are modeled using export 218 

coefficients that vary with LULC and soil properties and are applied to calculate the percentage 219 
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of the P pool that is delivered to streams. Total phosphorus (TP) delivery is closely associated 220 

with sediment delivery, which is estimated from USLE erosion rates (Linker et al., 2013). For 221 

the model evaluation, CBP-CWM estimated discharges were compared to GWLF and SWAT 222 

predictions directly. For the Queenstown planning scenario assessment, CBP-CWM predicted 223 

loading rates for the relevant land-river segments were applied by LULC class across the 224 

Queenstown HUCs (see Boomer et al., 2011 for more details).   225 

2.4. Model Setup, Calibration, and Validation 226 

The watershed models were driven with inputs from meteorological, topographic, LULC, 227 

and soils datasets. Hourly and daily weather data for 1984-2005 (precipitation, temperature, wind 228 

speed, relative humidity, dew point temperature, solar radiation, and cloud cover) were acquired 229 

from the Chesapeake Bay Environmental Observatory’s database (CBEO, 2012). A 10-meter 230 

DEM of the region was extracted from the USGS National Elevation Database 231 

(http://ned.usgs.gov/) and used to derive topographic inputs. Soil properties were obtained from 232 

the Soil Survey Geographic database (SSURGO) for Queen Anne’s County, MD 233 

(http://soils.usda.gov/survey/geography/ssurgo). Current LULC came from the 2002 Maryland 234 

LULC inventory supplied state of Maryland Department of Planning 235 

(http://planning.maryland.gov/OurWork/landuse.shtml). 236 

Flow and water quality data were not available for the Queenstown study watersheds, so the 237 

three models were calibrated and validated with measured flow, TN, and TP discharges from six 238 

gauged watersheds located approximately 20 km east of the study area (Figure 3). These six 239 

watersheds (304, 305, 306, 310, Greensboro, and Ruthsburg) were monitored for flow and water 240 

quality (TN and TP) for multiple years between 1984 and 2005, and collectively they provide 241 

over 30 years of flow and water quality data (Jordan et al. 1997; http://cbrim.er.usgs.gov/). Three 242 
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watersheds (304, 310 and Greensboro) were used to calibrate the models, and the other three 243 

watersheds (305, 306, and Ruthsburg) were used to validate the models. Calibration and 244 

validation were performed at the monthly timescale. Essential characteristics such as average 245 

elevation, average slope, and hydrologic soil groups of the targeted watershed are shown in 246 

Table 2.  247 

2.5. Model Comparisons and Synthesis 248 

The calibrated and validated models were applied to the Queenstown study area to quantify 249 

the effects of current LULC and of the three future land management scenarios on flow and 250 

water quality outputs. The predictions of the models were combined into ensemble predictions 251 

using weighted averaging (see below), and the ensemble predictions of the scenarios were 252 

compared to identify the least detrimental future LULC scenario. The weights were assigned 253 

based on the model performance at the validation sites. Concordance among the three models 254 

was measured with a variation index that was estimated separately for each constituent (flow, N, 255 

or P) at each time step (month or year):  256 

                        ��������� ��	
� �
� =  �
� × ∑ |�� − ��|�

�                                               (1)   257 

 258 

where, i is the model index, n is the number of predictions (models) available for the constituent 259 

at a specific time; �� is the average of those n predictions, and �� is the ith prediction. Small 260 

values of ν indicate close agreement among model outputs and large values indicate 261 

disagreement. 262 

Models were assigned weights for each constituent based on performance at the validation 263 

sites (305, 306 and Ruthsburg, Figure 3), such that: 264 
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                    ��,� = ���� !,"#$%
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!&$

                                                   (2) 265 

where ��,� is the weight assigned to model i for constituent j,  Ens is the Nash–Sutcliffe 266 

efficiency from model validation, and n is the number of models (3).  Ens can theoretically range 267 

from −∞ to 1. Values near 1 indicate near perfect agreement between model predictions and 268 

observed data, values near 0 indicate that the model is no better than simply using the average of 269 

the data, and negative values indicate that the model is worse than using that average.  For a 270 

given constituent j, the weights ��,� sum to 1. Single model predictions for the Queenstown 271 

assessment area were combined into ensemble predictions for each constituent and each scenario 272 

using Eq. (2), and those model average outputs were used to identify the least detrimental LULC 273 

Scenarios. 274 

3. Results and Discussions 275 

3.1. General Statistics for Model Calibration and Validation 276 

In Table 3, goodness of fit results (R2 and Ens) are presented in calibration and validation 277 

sites for all models. In addition, time series of observed data compared with model predicted 278 

flow, TP, and TN fluxes at calibration and validation watersheds are presented in the Appendix 279 

(Figure A1~A6).  All models performed well in predicting flow, with average Ens values around 280 

0.7 and 0.6 at the calibration and validation sites. Nitrogen predictions also had good but slightly 281 

lower Ens values (~0.6 and 0.5 for calibration and validation sites, respectively, Table 3). For 282 

phosphorus, the models had some negative average Ens values at the calibration sites (mostly at 283 

site 310), but the performance was acceptable at the validation sites (average Ens=0.2, Table 3). 284 

All three models are best at predicting flow (high Ens), intermediate at predicting TN (moderate 285 
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Ens), and poor at predicting TP (low or negative Ens, Table 3). In addition to R2 and Ens, mass 286 

balance error (MBE) was also tested to examine the potential differences among statistical 287 

measures. As shown in Table 3, coherent responses of MBE can be found in comparing with two 288 

other statistics. In general, it is hard to single out a specific model with better or poor 289 

performance in terms of statistical results.  290 

3.2. Simulation Results with Current LULC Map  291 

According to the variation index (Eq. 1), flow and TN predictions for current conditions 292 

(1984-2005) were less variable among models than were TP predictions (Figure 4). Except for 293 

the first year (1984), the variation index values for flow predictions were less than 0.25 and those 294 

for TN were less than 0.4, while index values for TP were higher (up to 0.74). As expected, all of 295 

the models predicted higher discharge during wet years (e.g., 1989, 1996, 1999 and 2003) than in 296 

drier years, but there also was greater variation among model predictions in wetter years. SWAT 297 

and GWLF had the highest and lowest predictions, respectively, for TP among the three models. 298 

For flow, SWAT and CBP-CWM predicted higher mean annual discharge (45 to 50 cm/year) 299 

than GWLF (32 cm/year). 300 

The SWAT, GWLF and CBP-CWM models follow similar temporal patterns in monthly 301 

predictions (Fig. 5). Flow is maximum around March and minimum in August. Flow predictions 302 

are most consistent among models in the wetter winter and spring months (December – May). 303 

The highest variation in predicted flow among models occurs in the summer to early fall (July-304 

September). In August, GWLF’s flow prediction is about one fourth of the SWAT and CBP-305 

CWM predictions. TN and TP predictions follow similar monthly patterns. Variation among the 306 

model predictions is lower in winter and spring compared to summer and fall, and the highest 307 

variation occurs in July and August, the driest months of the year. The variation index is notably 308 
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higher for TP than for TN and flow, due to relatively the large difference between SWAT and 309 

GWLF predictions. 310 

The patterns of variation among model predictions in a wet year (2003) are different from 311 

the patterns in a dry year (1987, Fig. 6). For the dry year (1987, 90 cm of precipitation), 312 

variations in flow predictions were low (less than 0.20) in the winter months, and substantially 313 

higher in the dry months (July through November). January has the highest average predicted 314 

flow among all months and the smallest variation among the models. SWAT predicts a February 315 

high peak flow, which may indicate that SWAT is relatively more sensitive to seasonal events 316 

(snow melt in this case) and the potential corresponding groundwater contribution. CBP-CWM 317 

predicts higher TN fluxes during a dry year than either the SWAT or GWLF models. For TP, the 318 

GWLF and CBP-CWM models predict similarly low loads that vary with the flow pattern, 319 

whereas SWAT oscillates significantly over the year with four local peaks. GWLF and CBP-320 

CWM predict extremely low TP loads from March to December (spring, summer, and fall). In 321 

addition, January and February have distinctively higher TP loads. 322 

For the wet year (2003, 168 cm of precipitation), the variation in flow predictions is 323 

generally low, and the highest variation occurs during February and the summer months when 324 

SWAT predicts higher discharge. Regarding model simulations in TN, both SWAT and GWLF 325 

predicted temporal patterns of TN loads similar to the patterns of flow simulation. CBP-CWM 326 

attributes almost all of the TN loads to groundwater delivery (baseflow), and therefore 327 

predictions fluctuate only marginally over the year. For TP, the pattern of monthly discharge in 328 

the wet year is similar to average monthly TP discharge. SWAT has a large peak in February, 329 

when GWLF has a smaller peak. The high TP and TN peaks result from higher predicted flows 330 

in February, but may also reflect fertilizer applications during that month (Zhu et al., 2012). The 331 
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GWLF and CBP-CWM models do not explicitly account for monthly variation in fertilizer 332 

application. 333 

3.3. LULC Scenario Analysis 334 

3.3.1 Annual Predictions of Hydrological & Nutrient Processes 335 

The differences among LULC scenario predictions for any model were relatively small 336 

compared to the differences among models for any LULC scenario (Figure 7 and 8). The 337 

predicted impacts of development on flow and nutrients delivered to the Queenstown Harbor 338 

Links watershed and Upper Wye River were similar. A common approach of scenario analysis is 339 

to look at the change of flow and nutrient loadings relative to a baseline scenario (Huisman et al., 340 

2009). In this study, the current LULC scenario is the baseline scenario, and all the changes were 341 

calculated relative to that baseline (Fig. 8). Changes in LULC in the Queenstown Harbor Links 342 

watershed are not expected (Table 1), so relative changes in flow, TN and TP were not assessed 343 

for this area. We expected similar directions of response to the LULC changes among all three 344 

models, but likely different rates or magnitude of response. The responses were more 345 

complicated than we expected, and in some cases there are almost no changes in discharges or 346 

loadings despite shifts in LULC conditions. The trends in predictions are interpreted separately 347 

for flow, TN and TP. 348 

Flow:  SWAT predicted that development would increase stream discharge by as much as 6 349 

to 9%, and that distributed growth would have the greatest impact on average annual flow (Figs. 350 

7 and 8). In contrast, CBP-CWM predicted that any future development would decrease annual 351 

average discharge by as much as 3%, with the consolidated growth scenarios having the biggest 352 

impact. GWLF flow predictions varied less than 1% across all scenarios. It has been shown 353 
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previously that SWAT may generate higher peak flow during the winter/spring seasons (due to 354 

potential snow melt events). However, this issue can also be justified in literature since 355 

urbanization is known to have the corresponding increase of flow (Owe, 1985). 356 

Nitrogen: For all three LULC scenarios, SWAT and GWLF predict TN increases up to 6%, 357 

while CBP-CWM predicted TN decreases of 7.5% for the “HI-CG” scenario and 17% for the 358 

“LO-CG” scenario. Overall, SWAT and GWLF tend to agree on both the direction and 359 

magnitude of TN change (except for QT Creek watershed). CBP-CWM predicted a decrease in 360 

TN for all scenarios in all watersheds. For TN loads, “LO-CG” was predicted by SWAT to be 361 

the least environmental friendly development scenario, but was the most environmental friendly 362 

according to CBP-CWM GWLF, which predicted that “HI-CG” was the least favorable scenario. 363 

Phosphorus: The highest agreements among the three watershed models are observed in 364 

relative changes in phosphorus prediction in Queenstown, but agreement was not as good in the 365 

Upper Wye and QT Creek watersheds. Almost all three models predict lower TP loadings for 366 

future scenarios at the whole study area (except for one in Upper Wye). SWAT predicts up to 367 

10% higher TP loading for QT creek, whereas the other two models report TP reduction.  368 

3.3.2 Least Detrimental LULC Scenarios 369 

Weights (λ) assigned to each model (for each constituent) based on their performance at the 370 

validation sites are shown in Table 4. Once the three models predictions on current and future 371 

LULC scenarios were synthesized by the method presented earlier, the relative changes in water 372 

quality and quantity caused by converting the current LULC to each of future LULC scenario 373 

were calculated (Table 5). The environmental impacts of the three development scenarios were 374 

ranked using ensemble averages of the predictions from the three models, where the models were 375 

weighted by their performance in model validation (Table 4).  The Distributed Growth (DG) 376 
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scenario will reduce the TN and TP by 2.8% and 7.2%, respectively (Table 5), and appears to be 377 

the development scenario with relatively better performance (i. e., it has the lowest nutrient 378 

loads). On the other hand, the DG scenario is closely followed by LO-CG scenario with 2.2% 379 

and 7.8% reductions of TN and TP (Table 5). DG has the highest reduction for TN, but LO-CG 380 

has the highest reduction for TP indicated the fact that the complexity of three implemented 381 

watershed models and resolution of our understanding currently are not yet suited to provide 382 

reliable suggestion for the following acts as a part of the decision making processes (e.g., law 383 

making, environmental protection regulations, or conservation practices).   384 

4. Summary and Conclusions 385 

In this study, three watershed models were applied to Queenstown, MD (a coastal 386 

community on Maryland’s Eastern Shore of Chesapeake Bay) to evaluate the potential impacts 387 

of anthropogenic development on flow, TN and TP loadings to the Chesapeake Bay. Three 388 

models performed similarly during calibration and validation among LULC scenarios. However, 389 

it is hard to identify which model may provide consistently better results (model predictions in 390 

terms of statistics) than the other. Similar findings also have been reported by Niraula et al. 391 

(2013) when comparing SWAT with GWLF, whereas neither of the models was significantly 392 

better than the other in simulating flow, sediment and nutrient loads.  393 

In general, there was a good agreement on annual average flow for Queenstown between the 394 

SWAT and CBP-CWM models; GWLF and CBP-CWM predicted similar TN and TP loads. 395 

Each model has different strengths and weaknesses. For instance, the primary strength of the 396 

SWAT model is that SWAT has numerous empirically- and physically based functions that 397 

govern complex hydrologic and nutrient processes. SWAT is capable of simulating the targeted 398 

watershed with proper settings. In addition, it has more than 2,000 peer-reviewed journal articles 399 
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supported as solid information base. It is fairly easy to solve challenging tasks within short 400 

timeframe. However, it could also be the weakness since it requires large number of system 401 

parameters. Users may face challenging calibration issues such as high-dimensional problems 402 

and it may be over-calibrated in some cases. On the other hand, GWLF is the model among the 403 

three that requires the least information from users. The associated benefits and drawbacks are 404 

right exactly the other way of SWAT. The CBP-CWM model, which is based upon the HSPF, is 405 

right in between SWAT and GWLF which compensate the computational loads from system 406 

parameters with modeling performance in terms of simulation precision. Therefore, model 407 

predictions were combined into an ensemble prediction weighted by model performance at the 408 

validation sites. It was stated in literature that major sources of uncertainty in watershed 409 

modeling are forcing inputs, system parameters, measurement data, and model structure (Yen et 410 

al., 2014a). The implementation of applying combinations of LULC with different models is also 411 

the exploration of structural uncertainty. In this study, both structural and input uncertainty was 412 

incorporated to examine the potential impacts upon model predictions. Using a combination of 413 

LULC allowed us to understand the relative importance of different hydrologic processes among 414 

the models (and accordingly, major sources of uncertainty).  415 

The use of multiple models and combining outputs in a systematic manner is gaining wider 416 

acceptance (Yen et al., 2015). For example, the Western Lake Erie Basin has been investigated 417 

by five research groups to explore higher level of scientifically credible and practice solutions for 418 

upcoming environmental issues (Scavia et al., 2016). This study demonstrated the benefits of 419 

using multiple models to assess the potential impacts of LULC change and the corresponding 420 

concurrent impacts on flow and nutrient processes. The use of multiple models or model 421 
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ensembles may significantly improve the reliability on predictions and could/should be extended 422 

to programs like TMDL development and NPDES permitting.  423 
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Table 1. Land use percentages in the study watersheds‡ 648 

Scenario 
  

Watershed 
Area 

(km2) 

Land Use Type (%) 

  Urban Forest Cropland Pasture Other 

Current 

  QT Harbor Link 4.7 31.4 35.8 23.9 0.0 8.9 

  QT Creek 8.3 14.4 22.7 57.2 0.8 4.9 

  Upper Wye 24 10.2 25.2 59.6 0.0 5.0 

  Queenstown† 37 15.5 24.4 54.6 0.2 5.4 

Distributed 

Growth (DG) 

  QT Harbor Link 4.7 31.4 35.8 23.9 0.0 8.9 

  QT Creek 8.3 27.3 22.8 44.3 0.8 4.9 

  Upper Wye 24 23.6 26.6 45.1 0.0 4.8 

  Queenstown† 37 25.4 26.9 42.2 0.2 5.3 

 

High Impact 

Consolidated 

Growth (HI-CG) 

  QT Harbor Link 4.7 31.4 35.8 23.9 0.0 8.9 

  QT Creek 8.3 22.1 22.8 49.5 0.8 4.9 

  Upper Wye 24 14.8 25.8 54.6 0.0 4.8 

  Queenstown† 37 18.5 26.4 49.5 0.2 5.3 

Low impact 

Consolidated 

Growth (LO-CG) 

  QT Harbor Link 4.7 31.4 35.8 23.9 0.0 8.9 

  QT Creek 8.3 22.1 22.8 44.3 6.0 4.9 

  Upper Wye 24 14.8 25.8 45.1 9.5 4.8 

  Queenstown† 37 18.5 26.4 42.2 7.5 5.3 

† The whole study area, consisting of the three watersheds altogether is referred to as “Queenstown” 649 
‡ 2002 Maryland LULC inventory http://planning.maryland.gov/OurWork/landuse.shtml 650 

 651 

 652 

Table 2. Essential characteristics of the targeted watersheds‡ 653 

Watershed 
Area 

(km2) 

Average 

Elevation 

(m) 

Average Slope 

(degree) 

Hydrologic Soil Group (%) 

A B B/D C C/D D 

304 10.2 19.2 1.9 0% 59% 7% 4% 23% 7% 

305 17.8 18.2 1.8 0% 58% 10% 3% 23% 6% 

306 7.5 21.6 1.2 5% 53% 10% 5% 23% 4% 

310 54.7 19.1 1.5 1% 51% 4% 16% 19% 9% 

Greensboro 294.0 17.3 1.5 2% 28% 0% 14% 1% 56% 

Ruthsburg 59.0 60.3 1.42 14% 44% 0% 20% 4% 18% 

Queenstown 37.1 9.7 2.2 0% 43% 1% 19% 31% 6% 

       † The whole study area, consisting of the three watersheds altogether is referred to as “Queenstown” 654 
       ‡ 2002 Maryland LULC inventory http://planning.maryland.gov/OurWork/landuse.shtml 655 
 656 

Table 3. Goodness of fit results at the calibration and validation sites 657 
Watershed 

&Time period 
Variable 

SWAT GWLF CBP-CWM 

R2 Ens MBEψ R2 Ens MBEψ R2 Ens MBEψ 

C
a
li

b
ra

ti
o

n
 S

it
es

 

304  

Apr 89~Dec 92 

Flow 0.70 0.67 -4% 0.74 0.77 -7% 0.67 0.66 -8% 

TN 0.58 0.36 -13% 0.65 0.56 9% 0.52 0.49 -10% 

TP 0.46 0.26 5% 0.28 -0.3 0% 0.31 0.10 -121% 

310 

Jul 90~Oct 95 

Flow 0.73 0.69 -8% 0.76 0.73 4% 0.77 0.75 -2% 

TN 0.74 0.54 5% 0.74 0.61 1% 0.80 0.77 1% 

TP 0.14 -1.66 6% 0.19 -0.92 15% 0.31 -0.07 -86% 

Greensboro 

Jan 84~Dec 99 

Flow 0.70 0.67 -6% 0.74 0.70 0% 0.73 0.73 -2% 

TN 0.63 0.49 -2% 0.55 0.59 6% 0.75 0.73 -10% 

TP 0.29 0.11 0% 0.52 0.3 1% 0.49 0.45 -16% 

V
al

id
at

io
n

 

S
it

es
 

305 

Apr 89~Dec 92 

Flow 0.78 0.73 8% 0.62 0.6 -3% 0.65 0.64 -1% 

TN 0.50 0.44 -7% 0.65 0.50 6% 0.58 0.57 -8% 

TP 0.42 0.38 19% 0.41 -0.05 4% 0.28 0.18 -1% 

306 

Apr 89~Feb 92 

Flow 0.64 0.54 -21% 0.63 0.60 14% 0.38 0.34 -3% 

TN 0.65 0.59 10% 0.57 0.55 14% 0.34 0.34 -2% 

TP 0.62 0.21 8% 0.37 0.36 5% 0.16 0.10 -2% 

Ruthsburg  † 

Nov 00~Mar 05 
Flow 0.66 0.61 -9% 0.69 0.62 -1% 0.64 0.63 -9% 

         † Only flow data was available at this site 658 
                ψ Positive MBE (Mass balance error) indicates underestimation 659 
 660 
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 661 

Table 4. Weights ('� assigned to each model and each constituent 662 

based on model performance at the validation sites.  The weights were 663 

used to combine model predictions into an ensemble average. 664 
 665 

SWAT GWLF CBP-CWM 

Flow 0.35 0.34 0.32 
TN 0.34 0.34 0.32 
TP 0.37 0.32 0.31 

 666 

 667 

 668 

 669 

 670 

Table 5. Environmental impacts of the three land use scenarios 671 

estimated by the weighted ensemble average predictions.  The 672 

numbers are the percentage change in discharge or load relative to the 673 

baseline current land use. 674 

Variable 
High Impact Consolidated 

Growth (HI-CG) 

Low Impact Consolidated 

Growth (LO-CG) 

Distributed Growth 

(DG) 

Flow 0.36 0.21 2.22 

TN 1.19 -2.17 -2.82 

TP -1.42 -7.81 -7.24 

 675 

  676 
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 677 

Figure 1. Three watersheds comprising the Queenstown study area on the eastern shore of 678 

Chesapeake Bay. Current development is mostly in the the gray area. 679 

 680 

 681 

 682 

 683 

 684 
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 688 
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 689 
Figure 2. Land use maps for current conditions and for three future development scenarios. 690 

The distributed growth scenario allows low intensity development across a large area, whereas 691 

the two consolidated growth scenarios concentrate medium density development in a smaller 692 

area.  DG: Distributed Growth; HI-CG: High Impact Consolidated Growth; LO-CG: Low Impact 693 

Consolidated Growth) 694 
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 701 

Figure 3. Location of the calibration and validation watersheds near the Queenstown study 702 

area (hatched shading). 703 

 704 
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 707 
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 714 

Figure 5. Average monthly flow and nutrient loadings predicted by each model under 715 

current land use for Queenstown watershed (1984-2005). Variation index (ν) is shown on right 716 

axes. 717 
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  719 

Figure 6. Flow and nutrient loading predictions by models for a dry year (1987, left) and a wet 720 

year (2003, right) under current land use. The results are combined for the three watersheds 721 
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 723 

Figure 7. Average annual flow and nutrient load predictions by each model under different land 724 

use scenarios for the three watersheds combined 725 
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731 

 732 

 733 

Figure 8. The percentage variation of mean annual flow, TN and TP fluxes at Queenstown, 734 

Upper Wye and QT Creek watersheds compared to current land use simulations, predicted by 735 

each model 736 

 737 

Queenstown

SWAT GWLF CBP5

%
 F

lo
w

 V
a
ri

a
ti

o
n

-4

-2

0

2

4

6

8

10

Upper Wye

SWAT GWLF CBP5

QT Creek

SWAT GWLF CBP5

SWAT GWLF CBP5

%
 T

N
 V

ar
ia

ti
o
n

-20

-15

-10

-5

0

5

10

15

SWAT GWLF CBP5 SWAT GWLF CBP5

SWAT GWLF CBP5

%
 T

P
 V

ar
ia

ti
o

n

-20

-15

-10

-5

0

5

10

15

HI-CG
LO-CG
DG

SWAT GWLF CBP5 SWAT GWLF CBP5CBP-CWM CBP-CWM CBP-CWM 

CBP-CWM CBP-CWM CBP-CWM 

CBP-CWM CBP-CWM CBP-CWM 



9 

 

Appendix  738 

Figures A1 to A6 present comparison of observed and model predicted monthly streamflow, TP 739 

and TN fluxes at calibration (304, 310 and Greensboro) and validation (306, 306 and Ruthsburg) 740 

watersheds. 741 

 742 

Figure A 1: Comparison of observed and model predicted monthly streamflow, TN and TP 743 

fluxes at watershed 304. Calibration period is April 1989 ~ Dec. 1992. 744 
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 746 

Figure A 2: Comparison of observed and model predicted monthly streamflow, TN and TP 747 

fluxes at watershed 310. Calibration period is July 1990 ~ Oct. 1995. 748 
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 750 

Figure A 3: Comparison of observed and model predicted monthly streamflow, TN and TP 751 

fluxes at watershed Greensboro. Calibration period is Jan. 1984 ~ Dec. 1999. 752 
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 754 

Figure A 4: Comparison of observed and model predicted monthly streamflow, TN and TP 755 

fluxes at watershed 305. Validation period is April 1989 ~ Dec. 1992. 756 
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 758 

Figure A 5: Comparison of observed and model predicted monthly streamflow, TP and TN 759 

fluxes at watershed 306. Validation period is April 1989 ~ Feb. 1992. 760 

 761 

 

S
tr

e
a
m

fl
o
w

 (
c
m

 m
o
n

-1
)

0

2

4

6

8

10

12

Observed

SWAT 

GWLF

CBP5

T
N

 F
lu

x
 (

k
g
 N

 h
a

-1
 m

o
n

-1
)

0

2

4

6

Month

01-89  07-89  01-90  07-90  01-91  07-91  01-92  07-92  01-93  

T
P

 F
lu

x
 (

k
g
 P

 h
a

-1
 m

o
n

-1
)

0.0

.5

1.0

1.5

SERC 306

CBP-CWM 



14 

 

 762 

Figure A 6: Comparison of observed and model predicted monthly streamflow at watershed 763 

Ruthsburg. Calibration period is Nov 2000 ~ March. 2005. 764 
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